2-pack-integrated intelligent Power System #### SKiiP 2414 GB17E4-4DUL V2 #### Features* - · Intelligent Power Module - Integrated current and temperature measurement - Integrated DC-link measurement - · Solder free power section - IGBT4 and CAL4F technology - Safety isolated switching and sensor signals - · Digital signal transmission - CAN Interface - 100% tested IPM - · RoHS compliant - UL file no. E242581 #### **Typical Applications** - · Renewable energies - Traction - Elevators - · Industrial drives #### Remarks For further information please refer to SKiiP®4 Technical Explanation #### **Footnotes** 1)With assembly of suitable MKP capacitor per terminal $^{\dot{2})}$ The specified maximum operation junction temperature $T_{\nu jop}$ can be > 150°C for a max. of 1000cum. Operations hours | Absolute Maximum Ratings | | | | | | | | |------------------------------|---|------------------------|----------------------|-------------------|--|--|--| | Symbol | Conditions | | Values | Unit | | | | | System | | | | | | | | | V _{CC} 1) | Operating DC link | /oltage | 1300 | V | | | | | V _{isol} | DC, t = 1 s, each po | olarity | 5600 | V | | | | | I _{t(RMS)} | per AC terminal, rm | s, sinusoidal current | 500 | Α | | | | | I _{max (peak)} | max. peak current | of power section | 3600 | Α | | | | | I _{FSM} | $T_j = 175 {}^{\circ}\text{C}, t_p = 10$ | ms, sin 180° | 15885 | Α | | | | | l ² t | $T_j = 175 {}^{\circ}\text{C}, t_p = 10$ | ms, diode | 1262 | kA ² s | | | | | f _{out} | fundamental output
(sinusoidal) | t frequency | 1 | kHz | | | | | T _{stg} | storage temperatur | е | -40 85 | °C | | | | | IGBT | | | | | | | | | V_{CES} | T _j = 25 °C | | 1700 | V | | | | | Ic | T _i = 175 °C | T _s = 25 °C | 3385 | Α | | | | | | 1,-175 0 | T _s = 70 °C | 2723 | Α | | | | | I _{Cnom} | | | 2400 | Α | | | | | T _j ²⁾ | junction temperature | | -40 175 | °C | | | | | Diode | | | | | | | | | V_{RRM} | T _j = 25 °C | | 1700 | V | | | | | l _F | T _j = 175 °C | T _s = 25 °C | 2362 | Α | | | | | | | T _s = 70 °C | 1869 | Α | | | | | I _{Fnom} | | | 2400 | Α | | | | | T _j ²⁾ | junction temperature | | -40 175 °C | | | | | | Driver | | | | | | | | | Vs | power supply | | 19.2 28.8 | V | | | | | V_{iH} | input signal voltage (high) | | V _s + 0.3 | V | | | | | dv/dt | secondary to primary side | | 75 | kV/μs | | | | | f _{sw} | switching frequenc | y | 10 | kHz | | | | | Characteristics | | | | | | | | | |------------------------------------|-------------------------|--------------------------|------|------|--------|-----|--|--| | Symbol | Conditions | min. | typ. | max. | Unit | | | | | IGBT | | | | | | | | | | V _{CE(sat)} | I _C = 2400 A | T _j = 25 °C | | 2.12 | 2.43 | V | | | | | at terminal | T _j = 150 °C | | 2.53 | 2.79 | V | | | | V_{CE0} | | T _j = 25 °C | | 1.10 | 1.20 | V | | | | | | T _j = 150 °C | | 1.00 | 1.10 | V | | | | r _{CE} | at terminal | T _j = 25 °C | | 0.42 | 0.51 | mΩ | | | | | at terriiriai | T _j = 150 °C | | 0.64 | 0.70 | mΩ | | | | E _{on} + E _{off} | I _C = 2400 A | V _{CC} = 900 V | | 1780 | | mJ | | | | | T _j = 150 °C | V _{CC} = 1300 V | | 2840 | | mJ | | | | R _{th(j-s)} | per IGBT switch | | | | 0.0138 | K/W | | | | R _{th(j-r)} | per IGBT switch | | | | 0.008 | K/W | | | 2-pack-integrated intelligent Power System #### SKiiP 2414 GB17E4-4DUL V2 #### Features* - · Intelligent Power Module - Integrated current and temperature measurement - Integrated DC-link measurement - Solder free power section - IGBT4 and CAL4F technology - Safety isolated switching and sensor signals - Digital signal transmission - CAN Interface - 100% tested IPM - · RoHS compliant - UL file no. E242581 #### **Typical Applications** - · Renewable energies - Traction - Elevators - · Industrial drives #### Remarks For further information please refer to SKiiP®4 Technical Explanation #### **Footnotes** 1)With assembly of suitable MKP capacitor per terminal $^{\dot{2})}$ The specified maximum operation junction temperature $T_{\nu jop}$ can be > 150°C for a max. of 1000cum. Operations hours | Characteristics | | | | | | | | | |--------------------------|---|-------------------------|------------------------------------|---|--------------------|-------------------|--|--| | Symbol | Conditions | | min. | typ. | max. | Unit | | | | Diode | | | • | | | | | | | $V_F = V_{EC}$ | I _F = 2400 A | T _i = 25 °C | | 2.02 | 2.34 | ٧ | | | | | at terminal $T_i = 150 ^{\circ}\text{C}$ | | | 2.27 | 2.62 | V | | | | V _{F0} | | T _j = 25 °C | | 1.21 | 1.36 | V | | | | | | T _j = 150 °C | | 0.99 | 1.12 | V | | | | r _F | at tarminal | T _j = 25 °C | | 0.34 | 0.41 | mΩ | | | | | at terminal | T _j = 150 °C | | 0.53 | 0.63 | mΩ | | | | E _{rr} | I _F = 2400 A | V _R = 900 V | | 412 | | mJ | | | | | T _j = 150 °C | V _R = 1300 V | | 664 | | mJ | | | | R _{th(j-s)} | per diode switch | | | | 0.0281 | K/W | | | | R _{th(j-r)} | per diode switch | | | | 0.02 | K/W | | | | Driver | l | | I | | | | | | | Vs | supply voltage non | stabilized | 19.2 | 24 | 28.8 | V | | | | I _{S0} | bias current @V _s = 2 | | | 260 | | mA | | | | Is | $k_1 = 46 \text{ mA/kHz}, k_2$
$f_{\text{out}} = 50 \text{Hz}, \text{ sinusoid}$ | = 260 | + k ₁ * f _{sw} | + k ₂ * l _{AC} ² | mA | | | | | V_{IT+} | input threshold volt | age (HIGH) | 0,7*V _s | | | V | | | | V _{IT-} | input threshold volt | age (LOW) | | | 0,3*V _s | ٧ | | | | R _{IN} | input resistance | | | 13 | | kΩ | | | | C _{IN} | input capacitance | | 1 | | nF | | | | | t _{pRESET} | error memory reset time | | | 500 | | ms | | | | t _{pReset(OCP)} | Over current reset time, FRT-function can be activated via CAN interface | | | | | μs | | | | t _{TD} | top / bottom switch interlock time | | | 3 | | μs | | | | t _{jitter} | jitter clock time | | | 50 | 58 | ns | | | | t _{SIS} | short pulse suppres | ssion time | | 0.6 | | μs | | | | t _{POR} | Power-On-Reset co | ompleted | | | 1 | S | | | | l _{digiout} | digital output sink o
(HALT-signal) | urrent | | | 16 | mA | | | | V _{it+ HALT} | input threshold volt (Low>High) | age HIGH HALT | 0,6*V _s | | | V | | | | V _{it-HALT} | input threshold voltage LOW HALT (High> Low) | | | | 0.4*V _s | V | | | | t _{d(err)} | Error delay time (from detection to HALT), (depends on kind of error) | | 3 | | 370 | μs | | | | I _{TRIPSC} | over current trip level | | 3600 | | | A _{PEAK} | | | | I _{LL} | | | | n.a. | | A _{PEAK} | | | | T _{trip} | over temperature tr | 128 | 135 | 142 | °C | | | | | T _{DriverTrip} | over temperature P | CB trip level | 113 | 120 | 124 | °C | | | | V_{DCtrip} | over voltage trip lev
deactivated via CA | 1300 | 1340 | 1380 | V | | | | | V _{DCtripLL} | | | n.a. | | V | | | | | · · · | | | | | | i | | | 2-pack-integrated intelligent Power System #### SKiiP 2414 GB17E4-4DUL V2 #### Features* - Intelligent Power Module - Integrated current and temperature measurement - Integrated DC-link measurement - Solder free power section - IGBT4 and CAL4F technology - Safety isolated switching and sensor signals - · Digital signal transmission - CAN Interface - 100% tested IPM - · RoHS compliant - UL file no. E242581 #### **Typical Applications** - · Renewable energies - Traction - Elevators - Industrial drives #### Remarks For further information please refer to SKiiP®4 Technical Explanation #### **Footnotes** 1)With assembly of suitable MKP capacitor per terminal $^{\dot{2})}$ The specified maximum operation junction temperature $T_{\nu jop}$ can be > 150°C for a max. of 1000cum. Operations hours | Characteristics | | | | | | | | | |------------------------------------|--|---------------------------------------|-------|--------|--------|-------|--|--| | Symbol | Conditions | min. | typ. | max. | Unit | | | | | System | | | | | | | | | | t _{d(on)IO} | V _{CC} = 1300 V
I _C = 2400 A | turn on propagation delay time | | 2.8 | | μѕ | | | | $t_{\text{d(off)IO}}$ | $T_j = 25 ^{\circ}\text{C}$ | turn off
propagation delay
time | 2.6 | | | μs | | | | dV_{CE}/dt_{on} | T 05 °C | I _C = 0 A | | 14 | | kV/μs | | | | | $T_j = 25 ^{\circ}\text{C}$
$V_{CC} = 1300 ^{\circ}\text{V}$ | $I_C = 2400 \text{ A}$ | | 3 | | kV/μs | | | | $dV_{\text{CE}}\!/dt_{\text{off}}$ | | $I_C = 2400 \text{ A}$ | | 10 | | kV/μs | | | | R _{th(s-a)} | flow rate = 550 m ³ /h, T _a =25°C,
500m above sea level | | | | 0.0225 | K/W | | | | R _{CC'+EE'} | measured per switch, T _s = 25 °C | | | 0.0675 | | mΩ | | | | L _{CE} | commutation inductance | | | 4.5 | | nΗ | | | | C _{CHC} | coupling capacitance secondary to heat sink | | | 6 | | nF | | | | C _{ps} | coupling capacitance primary to secondary | | | 0.08 | | nF | | | | I _{CES} + I _{RD} | $V_{GE} = 0 \text{ V}, V_{CE} = 1700 \text{ V}, T_j = 25 \text{ °C}$ | | 0.199 | | mA | | | | | M _{dc} | DC terminals | | 6 | | 8 | Nm | | | | M _{ac} | AC terminals | | 13 | | 15 | Nm | | | | W | SKiiP System w/o heat sink | | | 3.22 | | kg | | | | Wh | heat sink | | 8 | | kg | | | | | Isolation coordination acc. to EN 50178 and IEC 61800-5 | 5-1 | |---|---------------------------------------| | Maximum grid RMS voltage, line-to-line, grounded delta mains | 690V+20% | | Installation altitude for maximum grid RMS voltage, line-to-line, grounded delta mains | 2000m | | Maximum grid RMS voltage, line-to-line, star point grounded mains | 690V+20% | | Installation altitude for maximum grid RMS voltage, line-to-line, star point grounded mains | 4000m | | Maximum transient peak voltage between low voltage circuit and mains | 1900V | | Pollution degree acc. to IEC 60664-1 outside the moulded power section | 2 | | Overvoltage cat. acc. to IEC 60664-1 for mains | Ш | | Overvoltage cat. acc. to UL 840 within mains | I | | Overvoltage cat. acc. to UL 840 between mains and ground | Ш | | Overvoltage cat. acc. to UL 840 between mains and low voltage circuit | Ш | | Basic isolation | between heat sink and mains | | Reinforced isolation | between low voltage circuit and mains | | Protection level acc. to IEC 60529 | IP00 | ## Environmental conditions acc. to IEC 60721 | | Storage | Transportation | Operation
stationary use at
weather protected
locations | Operating ground
vehicle
installations | Operating ship environment | |---|--------------------|--------------------|--|--|----------------------------| | Climatic conditions | 1K2 ₍₁₎ | 2K2 ₍₁₎ | 3K3 ₍₁₎ | 5K1 ₍₁₎ | 6K1 ₍₁₎ | | Biological conditions | 1B1 | 2B1 | 3B1 | 5B1 | 6B1 | | Chemically active
substances
(excluded: salt spray) | 1C2 | 2C1 | 3C2 | 5C2 | 6C2 | | Mechanically active substances | 181 | 281 | 381 | 581 | 6S1 | | Mechanical conditions | 1M3 | (4) | 3M6 ₍₂₎ | 5M3 ₍₃₎ | 6M3 | | Contaminating fluids | | | | 5F1 | | - (1) expanded temperature range: -40°C / +85°C. Please note: by operation near 85°C the life time of product is reduced. - (2) 3M7 possible, but due to the mechanic load capacity of external components like DC-Link capacitors limited to 3M6 - (3) 5M3 without impact of foreign bodies, stones - (4) no declaration due to customer-specific packing Fig. 1: Typical IGBT output characteristics Fig. 2: Typical diode output characteristics Fig. 3: Typical switching energy $E = f(I_c)$ Fig. 4: Typical switching energy $E = f(I_c)$ Fig. 5: Transient thermal impedance Zth(j-s) Fig. 6: Transient thermal impedance Zth(j-r) Fig. 7: Transient thermal impedance Zth(s-a) | | R _{th} [K/W] | | | | | | |-----------------|-----------------------|--------|---------|---------|---------|--| | | 1 | 2 | 3 | 4 | 5 | | | $Z_{th(j-s)}$ I | 0,0010 | 0,0049 | 0,0055 | 0,0017 | 0,0007 | | | $Z_{th(j-s)}$ D | 0,0020 | 0,0100 | 0,0112 | 0,0034 | 0,0015 | | | $Z_{th(j-r)}$ I | 0,0021 | 0,0029 | 0,0058 | -0,0013 | -0,0015 | | | $Z_{th(j-r)}$ D | 0,0075 | 0,0060 | 0,0098 | -0,0033 | 0,0000 | | | $Z_{th(s-a)}$ | 0,0012 | 0,0052 | 0,0123 | 0,0038 | 0,0000 | | | | | | tau [s] | | | | | | 1 | 2 | 3 | 4 | 5 | | | $Z_{th(j-s)}$ I | 3,6500 | 0,4100 | 0,0650 | 0,0090 | 0,0008 | | | $Z_{th(j-s)}$ D | 3,6500 | 0,4100 | 0,0650 | 0,0090 | 0,0008 | | | $Z_{th(j-r)}$ I | 0,0130 | 0,0500 | 0,1200 | 4,4000 | 21,000 | | | $Z_{th(j-r)}$ D | 0,0060 | 0,0650 | 0,1300 | 3,2500 | 1,0000 | | | $Z_{th(s-a)}$ | 9,000 | 18,900 | 73,000 | 161,000 | 1,0000 | | Fig. 8: Coefficients of thermal impedances Fig. 9: Thermal resistance Rth(s-a) versus flow rate V Fig. 10: Pressure drop Δp versus flow rate V This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, chapter IX. #### *IMPORTANT INFORMATION AND WARNINGS The specifications of SEMIKRON products may not be considered as guarantee or assurance of product characteristics ("Beschaffenheitsgarantie"). The specifications of SEMIKRON products describe only the usual characteristics of products to be expected in typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Application adjustments may be necessary. The user of SEMIKRON products is responsible for the safety of their applications embedding SEMIKRON products and must take adequate safety measures to prevent the applications from causing a physical injury, fire or other problem if any of SEMIKRON products become faulty. The user is responsible to make sure that the application design is compliant with all applicable laws, regulations, norms and standards. Except as otherwise explicitly approved by SEMIKRON in a written document signed by authorized representatives of SEMIKRON, SEMIKRON products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not assume any liability arising out of the applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual property rights, nor the rights of others. SEMIKRON makes no representation or warranty of non-infringement or alleged non-infringement of intellectual property rights of any third party which may arise from applications. Due to technical requirements our products may contain dangerous substances. For information on the types in question please contact the nearest SEMIKRON sales office. This document supersedes and replaces all information previously supplied and may be superseded by updates. SEMIKRON reserves the right to make changes.